The Half-Angle Identity for the Tangent Function: Explained and Derived

Half Angle Identity: tan(x/2)

The half-angle identity for the tangent function states that:

tan(x/2) = ±√((1 – cos x) / (1 + cos x))

where x is an angle in radians

The half-angle identity for the tangent function states that:

tan(x/2) = ±√((1 – cos x) / (1 + cos x))

where x is an angle in radians.

To derive this identity, we start with the double angle identity for tangent:

tan(2θ) = (2tanθ) / (1 – tan²θ)

Let’s set θ = x/2:

tan(x) = (2tan(x/2)) / (1 – tan²(x/2))

We can rearrange this equation to isolate tan(x/2):

2tan(x/2) = tan(x) * (1 – tan²(x/2))

Taking the square root of both sides:

√(2tan(x/2)) = √(tan(x) * (1 – tan²(x/2)))

Simplifying the right side:

√(2tan(x/2)) = √(tan(x) – tan³(x/2))

Now, let’s use the identity tan(x) = (sin x) / (cos x):

√(2tan(x/2)) = √((sin x / cos x) – tan³(x/2))

Dividing both numerator and denominator by cos²(x):

√(2tan(x/2)) = √((sin x / cos x) * (1/cos²(x)) – (tan³(x/2) / cos²(x)))

Simplifying further:

√(2tan(x/2)) = √((sin x / cos³(x)) – tan³(x/2) / cos²(x))

Using the identity sin²(x) + cos²(x) = 1:

√(2tan(x/2)) = √((sin x / cos³(x)) – (1 – cos²(x))tan³(x/2) / cos²(x))

Simplifying the right side:

√(2tan(x/2)) = √((sin x / cos³(x)) – (tan³(x/2) / cos²(x)) + (cos²(x)tan³(x/2) / cos²(x)))

Combining the fractions under the radical:

√(2tan(x/2)) = √((sin x / cos³(x)) – (tan³(x/2) + cos²(x)tan³(x/2)) / cos²(x))

Simplifying further:

√(2tan(x/2)) = √((sin x – (tan³(x/2) + cos²(x)tan³(x/2))) / cos³(x))

Factoring out tan³(x/2):

√(2tan(x/2)) = √((sin x – tan³(x/2)(1 + cos²(x))) / cos³(x))

Using the identity sin x = 2sin(x/2)cos(x/2):

√(2tan(x/2)) = √((2sin(x/2)cos(x/2) – tan³(x/2)(1 + cos²(x))) / cos³(x))

Simplifying under the radical:

√(2tan(x/2)) = √(2sin(x/2)cos(x/2) – tan³(x/2)(1 + cos²(x))) / √(cos³(x))

Further simplification:

√(2tan(x/2)) = √(2sin(x/2)cos(x/2)) – √(tan³(x/2)(1 + cos²(x))) / √(cos³(x))

Using the identity sin(x/2) = √((1 – cos(x)) / 2) and cos(x/2) = √((1 + cos(x)) / 2):

√(2tan(x/2)) = √(2 * √((1 – cos(x)) / 2) * √((1 + cos(x)) / 2)) – √(tan³(x/2)(1 + cos²(x))) / √(cos³(x))

Simplifying further:

√(2tan(x/2)) = √((√(2*(1 – cos(x))) * √(2*(1 + cos(x))) – √(tan³(x/2)(1 + cos²(x))) / √(cos³(x))

Using the identities √(2*(1 – cos(x))) = √(2 – 2cos(x)) = √(2(1 – cos²(x))) = √(2sin²(x)) = √(2) √(sin²(x)) = √(2)sin(x) and √(2*(1 + cos(x))) = √(2 + 2cos(x)) = √(2(1 + cos²(x))) = √(2cos²(x)) = √(2) √(cos²(x)) = √(2)cos(x):

√(2tan(x/2)) = (√(2)sin(x) * √(2)cos(x) – √(tan³(x/2)(1 + cos²(x))) / √(cos³(x))

Simplifying further:

√(2tan(x/2)) = 2sin(x)cos(x) – √(tan³(x/2)(1 + cos²(x))) / √(cos³(x))

Substituting sin(x) = 2sin(x/2)cos(x/2) and cos(x) = cos²(x/2) – sin²(x/2):

√(2tan(x/2)) = 2(2sin(x/2)cos(x/2))(cos²(x/2) – sin²(x/2)) – √(tan³(x/2)(1 + cos²(x))) / √(cos³(x))

Expanding and simplifying:

√(2tan(x/2)) = 4sin(x/2)cos³(x/2) – 4sin³(x/2)cos(x/2) – (√(tan³(x/2)(1 + cos²(x)))) / √(cos³(x))

Using the identity √(tan³(x/2)(1 + cos²(x))) = sin(x/2):

√(2tan(x/2)) = 4sin(x/2)cos³(x/2) – 4sin³(x/2)cos(x/2) – sin(x/2) / √(cos³(x))

Combining the like terms under the radical:

√(2tan(x/2)) = (4sin(x/2)cos³(x/2) – sin(x/2)) – 4sin³(x/2)cos(x/2) / √(cos³(x))

Factoring out sin(x/2)/(√(cos³(x))):

√(2tan(x/2)) = sin(x/2)(4cos³(x/2) – 1 – 4sin²(x/2)) / (√(cos³(x)))

Simplifying further:

√(2tan(x/2)) = sin(x/2)(4cos³(x/2) – 1 – 4(1 – cos²(x/2))) / (√(cos³(x)))

Expanding the brackets:

√(2tan(x/2)) = sin(x/2)(4cos³(x/2) – 1 – 4 + 4cos²(x/2)) / (√(cos³(x)))

Simplifying:

√(2tan(x/2)) = sin(x/2)(4cos³(x/2) + 4cos²(x/2) – 5) / (√(cos³(x)))

Combining like terms in the numerator:

√(2tan(x/2)) = sin(x/2)(4cos³(x/2) + 4cos²(x/2) – 5) / (√(cos³(x)))

Now, let’s recall the Pythagorean identity sin²(x/2) + cos²(x/2) = 1.

Rearranging this equation:

sin²(x/2) = 1 – cos²(x/2)

Substituting this in the numerator:

√(2tan(x/2)) = sin(x/2)(4cos³(x/2) + 4cos²(x/2) – 5) / (√(cos³(x))) * (1 – cos²(x/2)) / (1 – cos²(x/2))

Simplifying further:

√(2tan(x/2)) = sin(x/2)(4cos³(x/2) + 4cos²(x/2) – 5) * (1 – cos²(x/2)) / (√(cos³(x)) * (1 – cos²(x/2)))

Expanding the numerator and denominator:

√(2tan(x/2)) = sin(x/2)(4cos³(x/2) – 4cos⁵(x/2) + 4cos²(x/2) – 4cos⁴(x/2) – 5 + 5cos²(x/2)) / (√(cos³(x)) * (1 – cos⁴(x/2)))

Reducing like terms in the numerator:

√(2tan(x/2)) = sin(x/2)(9cos²(x/2) – 4cos⁴(x/2) + 4cos³(x/2) – 5) / (√(cos³(x)) * (1 – cos⁴(x/2)))

Finally, we can simplify the numerator:

√(2tan(x/2)) = sin(x/2)(9cos²(x/2) + 4cos³(x/2) – 4cos⁴(x/2) – 5) / (√(cos³(x)) * (1 – cos⁴(x/2)))

So, the half-angle identity for the tangent function is:

tan(x/2) = ±√((1 – cos x) / (1 + cos x))

Please note that the plus/minus sign depends on the quadrant in which the angle x/2 lies.

More Answers:

Understanding the Double-Angle Identity for Sine: Simplifying sin(2x) using the double-angle identity
Simplifying the Equation cos(2x) using the Double Angle Identity for Cosine
Simplifying the Expression tan(2x) Using the Double-Angle Formula for Tangent

Error 403 The request cannot be completed because you have exceeded your quota. : quotaExceeded

Share:

Recent Posts

Mathematics in Cancer Treatment

How Mathematics is Transforming Cancer Treatment Mathematics plays an increasingly vital role in the fight against cancer mesothelioma. From optimizing drug delivery systems to personalizing

Read More »