A Huge Binomial Coefficient

The binomial coefficient $\displaystyle{\binom{10^{18}}{10^9}}$ is a number with more than $9$ billion ($9\times 10^9$) digits.

Let $M(n,k,m)$ denote the binomial coefficient $\displaystyle{\binom{n}{k}}$ modulo $m$.

Calculate $\displaystyle{\sum M(10^{18},10^9,p\cdot q\cdot r)}$ for $1000\lt p\lt q\lt r\lt 5000$ and $p$,$q$,$r$ prime.

To calculate the binomial coefficient modulo $m$, we can leverage the Lucas’ Theorem. Lucas’ Theorem states that for any positive integers $n$ and $k$, and prime $p$, the binomial coefficient $\binom{n}{k}$ can be calculated modulo $p$ as the product of the corresponding binomial coefficients of the base-$p$ representations of $n$ and $k$.

Here’s the Python code to calculate the sum $\sum M(10^{18}, 10^9, p \cdot q \cdot r)$ for primes $p$, $q$, and $r$:

“`python
def binomial_coefficient_modulo(n, k, p):
# Calculate the binomial coefficient modulo p using Lucas’ theorem

# Create the base-p representation of n and k
n_base_p = []
k_base_p = []
while n > 0:
n_base_p.append(n % p)
n //= p
while k > 0:
k_base_p.append(k % p)
k //= p

# Calculate the binomial coefficient modulo p
result = 1
for i in range(max(len(n_base_p), len(k_base_p))):
ni = n_base_p[i] if i < len(n_base_p) else 0 ki = k_base_p[i] if i < len(k_base_p) else 0 result = (result * combination_modulo(ni, ki, p)) % p return result def combination_modulo(n, k, p): # Calculate the combination modulo p # Calculate n! modulo p numerator = 1 for i in range(1, n + 1): numerator = (numerator * i) % p # Calculate k! modulo p denominator = 1 for i in range(1, k + 1): denominator = (denominator * i) % p # Calculate (n - k)! modulo p denominator_inverse = pow(denominator, p - 2, p) # Calculate the modular multiplicative inverse of denominator using Fermat's little theorem # Calculate the combination modulo p return (numerator * denominator_inverse) % p def sum_binomial_coefficients_modulo(p, q, r): # Calculate the sum of binomial coefficients modulo pqr modulo = p * q * r result = 0 for k in range(10**9 + 1): result = (result + binomial_coefficient_modulo(10**18, k, modulo)) % modulo return result # Calculate the sum sum_result = 0 for p in range(1001, q): for q in range(p + 1, r): for r in range(q + 1, 5000): if is_prime(p) and is_prime(q) and is_prime(r): sum_result += sum_binomial_coefficients_modulo(p, q, r) print(sum_result) ``` Note: The above code assumes that you have a function `is_prime(n)` that returns `True` if `n` is prime and `False` otherwise. You can use any reliable prime-checking algorithm, such as the Sieve of Eratosthenes or the Miller-Rabin primality test, to implement this function.

More Answers:
Squarefree Factors
Bézier Curves
Comfortable Distance

Error 403 The request cannot be completed because you have exceeded your quota. : quotaExceeded

Share:

Recent Posts

Mathematics in Cancer Treatment

How Mathematics is Transforming Cancer Treatment Mathematics plays an increasingly vital role in the fight against cancer mesothelioma. From optimizing drug delivery systems to personalizing

Read More »